Inductance of Wound Core

The inductance of a wound core at a given number of turns is calculated using the following formula.

$$L = \frac{0.4\pi\mu N^2 A \times 10^{-2}}{\varrho}$$

$$L_N = A_L \times N^2 \times 10^{-3}$$

L = inductance (μH)
μ = core permeability
N = number of turns
A = core cross section (cm²)
ξ = mean magnetic path length (cm)
LN = inductance for n turns (μH)
LN = nominal inductance (nH/N²)

Permeability - Flux Density - Magnetizing Force

Ampere's law and Faraday's law show the relations of permeability, flux density and magnetizing force of wound core.

$$H = \frac{0.4\pi Nl}{\varrho} \qquad \qquad \text{Ampere's Law}$$

$$B_{\text{max}} = \frac{E_{\text{rm}} \times 10^{8}}{4.44 \text{fAN}} \qquad \qquad \text{Faraday's Law}$$

$$\mu = \frac{B}{H}$$

H = magnetizing force (oersteds)N = number of turns

l = peak magnetizing current (amperes)
 l = mean magnetic path length (cm)

B_{max} = maximum flux density (gausses) E_{rms} = voltage across coil (volts) f = frequency (hertz)

Inductance calculation by Permeability vs DC Bias Curves

Inductor specification

- Core: CM270125

- Number of Winding: 22Turns

- Current : DC 10Amperes

solution

a) Formula to calculate L at 0 Ampere

 $L_N = A_L \times N^2 \times 10^3$

The Nominal inductance table on page 7 shows the AL value of CM270125 to be 157.

Therefore, L (@0A) = $157 \times 22^2 \times 0.001 = 76 (\mu H)$

b) Determine DC magnetizing force (H) by using Ampere's law to achieve the roll off.

 $H = 0.4\pi NI/I$

 $H = 0.4 \times 3.14 \times 22 \times 10 / 6.35 = 43.5(Oe)$

The magnetizing force(dc bias) is 43.5 oersteds, yielding 59% of inital permeability.

The inductance at 10Ampere will decrease by 59% compared with 0Ampere.

Therefore, L(@10A) = 76×0.59

 $=44.8(\mu H)$

* Inductance calculation by AL vs NI Curve is also available on 21 page.